Scientists Found a Way to Engineer Nearly 4000 Mutations of a Breast-Cancer Gene

When Lea Starita was a graduate student, her advisor would talk about analyzing BRCA1 piece by piece—creating a blueprint for the effects of every possible mutation before it’s even seen in a patient. “I remember rolling my eyes,” says Starita. “I didn’t think it was possible.” At the time, it wasn’t: Scientists were generating mutations one by one and doing a set of experiments for each one.

Fifteen years later, Starita and her colleague Jay Shendure at the University of Washington and the Brotman Baty Institute for Precision Medicine have figured out a way to study BRCA1 at scale Starita never imagined. In a study published in Nature, they assess the cancer risk of a whopping 3,893 BRCA1 mutations. It’s made possible by CRISPR, a gene-editing tool that allowed them to engineer all 3,893 mutations essentially at once.

“This work was really tour de force,” says Susan Domcheck, an oncologist at the University of Pennsylvania who was not involved in the study. It’s still too early to base patient decisions on the study alone, but it provides a road map for researching all the unknown variants of BRCA1 and other cancer genes.

To introduce different variants into BRCA1, Starita and Shendure ordered snippets of DNA—scientists can just do this online now—that corresponded with every possible single-letter mutation along approximately 1,300 letters of the gene. (Since DNA has four different bases—A, T, C, and G—there are three possible mutations at each location to give the 3,893 mutations reported in this study.) They then used CRISPR to paste those segments into the DNA of human cells.

But they didn’t use any ordinary human cell. They specifically found a type of human cell that dies when its copy of BRCA1 does not work. This was clever because they simply had to wait for the cells with different BRCA1 variants to grow, noting which variants allowed cells to thrive (meaning its BRCA1 was functional) and which caused them to die (non-functional). Since BRCA1 normally suppresses cancer, a nonfunctional BRCA1 mutation is likely to put human breast tissue at a high risk for cancer.

The team compared their results to a database of known BRCA1 variants to test their findings’ accuracy. Of the variants they engineered, 169 turned out to be known pathogenic variants: 162 were non-functional, two functional, and five somewhere in between. Of 22 known benign mutations, their test deemed 20 functional, one non-functional, and one in between. Not perfect, but close. The work, in total, took about six months.

In contrast, says Couch, who was not involved in the study, his frequent research collaborator Alvaro Monteiro at Moffitt Cancer Center has been analyzing mutations in BRCA1 one by one in cells growing in a lab. Over 15 years, he’s looked at 300 to 350 variants. His analysis has been more carefully validated against actual patient data, so it carries a little more heft.

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *